
Using Triggered Operations to Offload Collective
Communication Operations

K. Scott Hemmert1, Brian Barrett1, and Keith D. Underwood2

1 Sandia National Laboratries?

P.O. Box 5800, MS-1110
Albuquerque, NM, 87185-1110

kshemme@sandia.gov, bwbarre@sandia.gov
2 Intel Corporation
Hillsboro, OR, USA

keith.d.underwood@intel.com

Abstract. Efficient collective operations are a major component of ap-
plication scalability. Offload of collective operations onto the network
interface reduces many of the latencies that are inherent in network com-
munications and, consequently, reduces the time to perform the collective
operation. To support offload, it is desirable to expose semantic building
blocks that are simple to offload and yet powerful enough to implement a
variety of collective algorithms. This paper presents the implementation
of barrier and broadcast leveraging triggered operations — a semantic
building block for collective offload. Triggered operations are shown to
be both semantically powerful and capable of improving performance.

1 Introduction

Although the vast majority of data volume that is transferred within science and
engineering applications is in relatively localized, point to point communications,
these applications also include some number of global communications known
as collectives. Many collective communications are inherently less scalable, as
they involve communications all the way across the machine and contributions
from every node. As system sizes increase, it becomes increasingly difficult to
implement fast collectives across the entire system. One approach to improving
collective performance is to offload collective operations to the network.

Many prior approaches to offloading collective operations have offloaded the
entire collective operation, including the communication setup and computa-
tion [1]. While this eliminates the host overhead, it creates a more complicated
offload function that is harder to adapt over time. As an alternative, a similar
level of offload can be achieved with more elementary building blocks that are
both easier to implement in hardware and less subject to change. When building

? Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.



2

blocks are provided, the host library (e.g., MPI) is able to more readily adopt
new collective algorithms as they are being developed. Alternatively, the host
can more easily tune the algorithm based on the size of the system, the layout
of the job on the system, and the size of the collective.

Portals 4 [2] introduced a set of semantic building blocks that included trig-
gered operations and counting events that were explored for MPI ALLREDUCE
in [3]. Triggered operations allow an application to schedule a new network op-
eration to occur in the future when a counting event reaches a specified threshold.
This paper illustrates the breadth of triggered operations for implementing col-
lective algorithms ranging from tree based barriers to dissemination barriers to
bulk data broadcasts. Simulation results show the performance improvements
that can be achieved using offload through triggered operations.

2 Related Work

Offload of collective operations has been an active area of research for many
years. Custom engineered systems like the Cray T3D provided hardware barrier
synchronization [4] and IBM’s BG/L provided a dedicated collective network.
Similarly, research into hardware support for collective operations on commodity
hardware began in the mid-1990’s [5]. This work became more prevalent with the
arrival of programmable network interfaces like Myrinet and Quadrics. Barrier [1,
6] and broadcast [7] are particularly popular targets.

Offloading collective operations onto a Myrinet NIC requires significant en-
hancements to the control program running on the NIC processor. Because this
requires significant effort for each collective operation offloaded, mechanisms to
provide more dynamic offloaded capability were proposed [8]. Unlike Myrinet,
the Quadrics Elan network supported a user-level thread on the NIC. Because
this user-level thread has direct access to the address space of the process that
created it, it is easier to create extended functionality to offload collectives. The
programming environment for the Elan adapters provides some key functionality.
For example, Elan event functions can increment a counter by a user specified
amount when an operation, such as a DMA transfer, completes. Events could
be chained to allow the triggering of one event to trigger others. Elan events are
very similar to the counting events that were added to the Portals [2] API.

3 Triggered Operations in Portals 4

Triggered operations and counting events were introduced into Portals 4 [2] as
semantic building blocks for collective communication offload. Triggered opera-
tions provide a mechanism through which an application can schedule message
operations that initiate when a condition is met. Triggered versions of each of
the Portals data movement operations were added (e.g., PtlTriggeredPut(),
PtlTriggeredGet(), and PtlTriggeredAtomic()) by extending the argument
list to include a counting event on which the operation will trigger and a thresh-
old at which it triggers. In turn, counting events are the lightweight semantic



3

provided to track the completion of network operations. Counting events are
opaque objects containing an integer that can be allocated, set to a value, or
incremented by a value through the Portals API. In addition, they can be at-
tached to various Portals structures and configured to count a variety of network
operations, such as the local or remote completion of a message as well as the
completion of incoming operations on a buffer (e.g., the completion of a PtlPut()
or PtlAtomic() to a local buffer).

A triggered operation is issued by the application and then initiated by the
network layer when a counting event reaches a threshold. Through careful use
of counting events and triggered operations, an almost arbitrary sequence of
network operations can be setup by the application and then allowed to progress
asynchronously. A discussion of how reduction operations can be implemented
using triggered operations is presented in [3].

4 Evaluation Methodology

The Structural Simulation Toolkit (SST) v2.0 [9] was used to simulate both
host-based and offloaded versions of several collective algorithms. SST provides
a component-based simulation environment, designed for simulating large-scale
HPC environments. It simultaneously provides both cycle-accurate and event-
based simulation capabilities. Here, we present both the algorithms simulated
and a description of the parameters used for simulation.

4.1 Collective Algorithms

Three barrier algorithms were simulated for both a host based and a triggered
operation based implementation. The first algorithm was a binomial tree (not
shown) with the experimentally determined optimal radix chosen for both the
host and the triggered cases. The tree algorithm is similar to what was explored
for Allreduce in prior work [3]. The second algorithm used was the recursive dou-
bling algorithm (also not shown), which is a simplified variant of the Allreduce
in [3], since no data movement is required.

The final algorithm explored is the dissemination barrier [10]. In the radix-2
version, the dissemination barrier has a series of rounds, R, where each node, N ,
sends a message to node (N + 2R) mod P . A message in a given round can only
be sent after messages for all prior rounds have been received. Because some
nodes can proceed through the rounds faster than others, a node must receive
a specific set of messages before proceeding. This is synonymous with receiving
the message for this round and having completed the previous round, which is
how the algorithm in Figure 1 is structured. Figure 1 is also extended to show a
higher radix dissemination barrier algorithm.

A binomial tree algorithm is used for broadcast. Figure 2 shows how trig-
gered operations can be leveraged for a rendezvous style protocol implementing
a tree. At communicator creation, each node creates a descriptor to receive mes-
sages from their “parent” in the tree. When the collective is initiated, children



4

//Round 0 message from self when we enter
for (j = 1; j < radix; j++) PtlPut(user md h, (id+j) % num nodes, 0);
//Signal round 1. Only receive radix−1 messages and not signal from previous round
PtlTriggeredCTInc(level ct hs[1], 1, level ct hs[0], radix−1);
PtlTriggeredCTInc(level ct hs[0], −(radix−1), level ct hs[0], radix−1);
for (i = 1, level = 0x2 ; level < num nodes ; level <<= log2(radix), ++i) {

for (j = 0; j < (radix−1); ++j) {
remote = (id + level + i) % num nodes;
// Start round i when input from round i − 1 peer arrives and
// communication to round i − 1 completes
PtlTriggeredPut(md h, remote, i, level ct hs[i], radix);

}
//Signal round i+1 that round i (and all previous rounds) is done
PtlTriggeredCTInc(level ct hs[i+1], 1, level ct hs[i], radix);
//Clean−up this iteration
PtlTriggeredCTInc(level ct hs[i], −radix, level ct hs[i], radix);

}
// wait for completion and clean up last level
PtlCTWait(level ct h[levels], 1);
PtlTriggeredCTInc(level ct hs[levels], −1, level ct hs[levels], 1);

Fig. 1. Pseudo-code for the triggered dissemination barrier algorithm

determine who their parent will be based on the root and issue a triggered get.
When the data is available in the local buffer, the parent notifies the child, which
increments the counting event that releases the triggered get. The algorithm is
pipelined by issuing multiple triggered gets with offsets that trigger at different
count thresholds. Short messages are sent using a puts into the bounce buffer,
with a user-level copy on completion.

4.2 Simulation Model

The collective operation simulations utilize a cycle-based router and network
model combined with an event driven model of the network interface and the
host. A torus network of up to 32K nodes (32 × 32 × 32) was simulated. Simu-
lations were run with and without simulated OS interference to determine the
success of offloaded implementations in eliminating noise. The router simulation
matched those used in earlier simulations [9]. In contrast, the node was modeled
as a simple state machine. Message insertion rate, delays for copying data to the
NIC, and delays associated with memory copies were all modeled as interrelated
occupancies in a queuing model. The NIC used a similar set of occupancies to
model the NIC level operations and fed data (packets) to the router model.

Key parameters were modeled for both the NIC and host processing times:
bus delays, delays through the NIC, occupancy in the receive processing logic,
and memory latencies. Parameters that were used corresponded to network la-



5

if (my root == my id) {
/∗ Notify children that all chunks are ready ∗/
for (j = 0 ; j < msg size ; j += chunk size)

for (i = 0 ; i < num children ; ++i) PtlPut(bounce md, 0, 0, 0, child[i], 0);
} else {

/∗ iterate over chunks ∗/
for (offset = 0 ; offset < msg size ; offset += chunk size) {

/∗ when a chunk is ready, issue get. Local and remote offset are the same ∗/
PtlTriggeredGet(out md, offset, chunk size, my root, offset,

bounce ct, j / chunk size);
/∗ then when the get is completed, send ready notice to children ∗/
for (i = 0 ; i < num children ; ++i)

PtlTriggeredPut(bounce md, 0, 0, 0, child[i], 0, out md ct, offset / chunk size);
}
/∗ reset 0−byte put received counter ∗/
PtlTriggeredCTInc(bounce ct, −count, bounce ct, count);

}
/∗ wait for children gets ∗/
if (num children > 0) PtlCTWait(out me ct, count);
/∗ wait for local gets to complete ∗/
else PtlCTWait(out md ct, count);

Fig. 2. Pseudo-code for the long message triggered binomial tree broadcast

tencies of 1 µs and 1.5 µs and are shown in Table 1. The one way message rates
are limited by the highest latency, unpipelined processing stage. Since the hard-
ware stages are pipelined, the message rate limiter is the software, which yields
5.7 million messages per second (Mmsgs/s) and 3.3 Mmsgs/s for 1 µs and 1.5 µs
latency, respectively. The rate at which the NIC can issue triggered operations is
limited by the 8 flit header and the 500 MHz clock to yield 62.5 Mmsgs/s (once
the operations are queued on the NIC). To enqueue triggered operations, the
software faces the same limitations as message transmits; therefore, triggered
operations can be enqueued at 10 Mmsgs/s and 5 Mmsgs/s, based on the 100
ns and 200 ns TX software delays, respectively. As a final parameter, setup time
for the collective operation — time needed by MPI before communication starts
to setup the algorithm — is set to 200 ns. In addition to the baseline simula-
tions, we run simulations representing the impact of OS noise. One “long noise
at infrequent interval” signature (25 µs at 1 KHz) from a previous study [11] is
used to represent OS noise.

5 Results

Figure 3 compares the performance of the three barrier algorithms with 1000 ns
and 1500 ns latency for both host and triggered implementations. The triggered
implementation has over a 2× advantage that is larger at higher latency, since



6

Table 1. Summary of simulation parameters

Msg Latency 1000 ns 1500 ns Msg Latency 1000 ns 1500 ns

TX Software Delay 100 ns 200 ns RX Software Delay 175 ns 300 ns
TX Bus Delay 200 ns 300 ns RX Bus Delay 200 ns 300 ns
TX NIC Delay 75 ns 100 ns RX NIC Delay 150 ns 200 ns

Memory Latency 100 ns 100 ns Read over Bus 400 ns 500 ns

the triggered operations experience lower effective latency and higher effective
message rate when they actually issue from the NIC. Much of the real latency
and message posting overheads are overlapped with other communications for
triggered operations (i.e., they happen before the host implementation is free
to initiate the messages). Note that we used a Radix-8 implementation for the
triggered dissemination barrier, which gave it a significant advantage over the
very similar recursive doubling algorithm using Radix-2. Radix-8 results for the
host variant (not shown) were far worse than Radix-2.

0

10000

20000

30000

40000

50000

60000

70000

80000

64 128 256 512 1024 2048 4096 8192 1638432768

B
ar

rie
r 

T
im

e 
(n

s)

Nodes

Host Tree: 1000 ns latency, Radix-8
Trig. Tree: 1000 ns latency, Radix-16
Host Rec. Doubling: 1000 ns latency
Trig. Rec. Doubling: 1000 ns latency
Host Dissemination: 1000 ns latency

Trig. Dissem.: 1000 ns latency, Radix-8

0

10000

20000

30000

40000

50000

60000

70000

80000

64 128 256 512 1024 2048 4096 8192 1638432768

B
ar

rie
r 

T
im

e 
(n

s)

Nodes

Host Tree: 1500 ns latency, Radix-4
Trig. Tree: 1500 ns latency, Radix-8

Host Rec. Doubling: 1500 ns latency
Trig. Rec. Doubling: 1500 ns latency
Host Dissemination: 1500 ns latency

Trig. Dissem.: 1500 ns latency, Radix-8

1000 ns latency 1500 ns latency

Fig. 3. Simulated barrier time

Figure 4 presents results of simulations with noise. While the barrier time
increases substantially for host based implementations and shows growing impact
as the number of nodes increases, the barrier time for implementations using
triggered operations shows more modest impact from noise and the noise impact
levels off at large node counts. In addition, note that the introduction of noise
changes the “right” algorithm to use. Both dissemination and recursive doubling
algorithms require processing by every node at every stage, but a tree based
algorithm uses logarithmically fewer nodes at each stage. This carries over to
triggered operations, since all nodes spend a significant amount of time injecting
messages in the dissemination and recursive doubling barrier algorithms, but
most nodes inject few messages in the binomial tree.



7

0

50000

100000

150000

200000

64 128 256 512 1024 2048 4096 81921638432768

B
ar

rie
r 

T
im

e 
(n

s)

Nodes

Host Tree: 1000 ns latency, w/ Noise
Triggered Tree: 1000 ns latency, w/ Noise
Host Rec. Dbl.: 1000 ns latency, w/ Noise
Trig. Rec. Dbl.: 1000 ns latency, w/ Noise

Host Diss: 1000 ns latency, w/ Noise
Trig. Diss: 1000 ns latency, w/ Noise

0

10000

20000

30000

40000

50000

60000

70000

80000

64 128 256 512 1024 2048 4096 8192 1638432768

B
ro

ad
ca

st
 T

im
e 

(n
s)

Nodes

Host: 1000 ns latency, Radix-8
Triggered Tree: 1000 ns latency, Radix-16

Host: 1000 ns latency, w/ Noise
Triggered Tree: 1000 ns latency, w/ Noise

Barrier with Noise Small Broadcast Performance

Fig. 4. Simulated time with Noise

Broadcast performance is presented in Figure 4 for small messages (8 bytes)
and in Figure 5 for a sweep over larger messages at 4096 nodes. At small mes-
sages, the triggered operations provide a 15–20% performance improvement over
host based algorithms, in addition to substantially less noise sensitivity. At larger
message sizes, however, broadcast using triggered operations has a smaller per-
formance and noise sensitivity advantage. Serialization delay to transfer data
dominates both noise and processor overheads, which can be seen by the con-
vergence of the host and triggered results in Figure 5. The triggered technique
shows promise for non-blocking collectives, however, as it offers similar perfor-
mance to host-based collectives with minimal processor overhead after an initial
setup period. The use of a multi-post triggered interface to save round-trip com-
munication with the NIC when setting up the messaging pipeline would further
reduce the (small) processor overhead experienced for triggered bcasts of large
messages and will be examined in future work.

10000

100000

1e+06

1e+07

4K 16K 64K 256K 1M

B
ro

ad
ca

st
 T

im
e 

(n
s)

Size (bytes)

Host: 1000 ns latency, Radix-4
Triggered Tree: 1000 ns latency, Radix-4

10000

100000

1e+06

1e+07

4K 16K 64K 256K 1M

B
ro

ad
ca

st
 T

im
e 

(n
s)

Size (bytes)

Host: 1000 ns latency, w/ Noise
Triggered Tree: 1000 ns latency, w/ Noise

Broadcast size sweep Broadcast size sweep Noise

Fig. 5. Sweep of broadcast size with and without noise



8

6 Conclusions

This paper has illustrated that triggered operations leveraging counting events
are semantically sufficient to implement a variety of collective algorithms. Pseudo-
code was shown for a rendezvous-like functionality for long broadcasts and
pseudo-code was shown for higher radix dissemination barriers. Collectives based
on triggered operations are shown to be both higher performing (by over 2×)
and more resistant to interference from system noise.

References

1. Buntinas, D., Panda, D.K., Sadayappan, P.: Fast NIC-based barrier over
Myrinet/GM. In: Proceedings of the International Parallel and Distributed Pro-
cessing Symposium. (April 2001)

2. Riesen, R.E., Pedretti, K.T., Brightwell, R., Barrett, B.W., Underwood, K.D.,
Hudson, T.B., Maccabe, A.B.: The Portals 4.0 message passing interface. Technical
Report SAND2008-2639, Sandia National Laboratories (April 2008)

3. Underwood, K.D., Coffman, J., Larsen, R., Hemmert, K.S., Barrett, B.W.,
Brightwell, R., Levenhagen, M.: Enabling flexible collective communication of-
fload with triggered operations. In: submitted to Proceedings of the 2010 IEEE
International Conference on Cluster Computing. (September 2010)

4. Scott, S.L., Thorson, G.: Optimized routing in the Cray T3D. In: PCRCW ’94:
Proceedings of the First International Workshop on Parallel Computer Routing
and Communication, London, UK, Springer-Verlag (1994) 281–294

5. Yih Huang, P.K.M.: Efficient collective operations with ATM network interface
support. In: Proceedings of the International Conference on Parallel Processing.
(August 1996) 34–43

6. Yu, W., Buntinas, D., Graham, R.L., Panda, D.K.: Efficient and scalable bar-
rier over Quadrics and Myrinet with a new NIC-based collective message passing
protocol. In: Proceedings of the Workshop on Communication Architecture for
Clusters. (April 2004)

7. Buntinas, D., Panda, D.K., Duato, J., Sadayappan, P.: Broadcast/multicast over
Myrinet using NIC-assisted multidestination messages. In: Proceedings of the
Fourth International Workshop on Communication, Architecture, and Applica-
tions for Network-Based Parallel Computing. (January 2000)

8. Wagner, A., Jin, H.W., Panda, D.K., Riesen, R.: NIC-based offload of dynamic
user-defined modules for Myrinet clusters. In: Proceedings of the 2004 IEEE In-
ternational Conference on Cluster Computing. (September 2004) 205–214

9. Underwood, K.D., Levenhagen, M., Rodrigues, A.: Simulating Red Storm: Chal-
lenges and successes in building a system simulation. In: 21st International Parallel
and Distributed Processing Symposium (IPDPS’07). (March 2007)

10. Hoefler, T., Mehlan, T., Mietke, F., Rehm, W.: Fast barrier synchronization for
InfiniBand. In: Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.
20th International. (April 2006)

11. Ferreira, K.B., Bridges, P., Brightwell, R.: Characterizing application sensitivity
to OS interference using kernel-level noise injection. In: SC ’08: Proceedings of
the 2008 ACM/IEEE conference on Supercomputing, Piscataway, NJ, USA, IEEE
Press (2008) 1–12


